RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 1993 Volume 34, Number 2, Pages 170–172 (Mi smj1684)

A condition sufficient for nonexistence of a cycle in a two-dimensional system quadratic in one of the variables

V. A. Toponogov


Abstract: For the system $\dot x=h_1(x)+h_2(x)y=P(x,y)$, $\dot y=f_1(x)+f_2(x)y+f_3(x)y^2=Q(x,y)$, the following theorem is proved.
Theorem. If the divergence of the vector field $(P,Q)$ does not change its sign and is not equal identically to zero along the isocline $h_1(x)+h_2(x)y=0$, then the system has no closed trajectory.

UDC: 517.926

Received: 13.06.1990


 English version:
Siberian Mathematical Journal, 1993, 34:2, 350–352

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025