RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2007 Volume 48, Number 4, Pages 789–810 (Mi smj1745)

This article is cited in 5 papers

Necessary and sufficient conditions for a curve to be the gradient range of a $C^1$-smooth function

M. V. Korobkova, E. Yu. Panovb

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Novgorod State University after Yaroslav the Wise

Abstract: We find some necessary and sufficient conditions for a plane curve to be the gradient range of a $C^1$-smooth function of two variables. As one of the consequences we give the necessary and sufficient conditions on a continuous function $\varphi$ under which the differential equation $\dfrac{\partial v}{\partial t}=\varphi\biggl(\dfrac{\partial v}{\partial x}\biggr)$ has nontrivial $C^1$-smooth solutions.

Keywords: $C^1$-smooth function, gradient range, curve.

Received: 25.01.2006


 English version:
Siberian Mathematical Journal, 2007, 48:4, 629–647

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024