Abstract:
We introduce and study the notions of computable formal context and computable formal concept. We give some examples of computable formal contexts in which the computable formal concepts fail to form a lattice and study the complexity aspects of formal concepts in computable contexts. In particular, we give some sufficient conditions under which the computability or noncomputability of a formal concept could be recognized from its lattice-theoretic properties. We prove the density theorem showing that in a Cantor-like topology every formal concept can be approximated by computable ones. We also show that not all formal concepts have lattice-theoretic approximations as suprema or infima of families of computable formal concepts.