Abstract:
We prove the following: (1) a torsion-free class 2 nilpotent group is constructivizable if and only if it is isomorphic to the extension of some constructive abelian group included in the center of the group by some constructive torsion-free abelian group and some recursive system of factors; (2) a constructivizable torsion-free class 2 nilpotent group whose commutant has finite rank is orderably constructivizable.
Keywords:constructive group, nilpotent group, computable subgroup, center, system of factors.