RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2008 Volume 49, Number 3, Pages 682–697 (Mi smj1870)

This article is cited in 1 paper

Dimension scales of bicompacta

V. V. Fedorchuk

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We introduce the notion of a (stable) dimension scale $d-sc(X)$ of a space $X$, where $d$ is a dimension invariant. A bicompactum $X$ is called dimensionally unified if $\dim F=\dim_GF$ for every closed $F\subset X$ and for an arbitrary abelian group $G$. We prove that there exist dimensionally unified bicompacta with every given stable scale $\dim-sc$.

Keywords: dimension, cohomological dimension, bicompactum, dimension scale.

UDC: 515.127+515.142

Received: 23.12.2006


 English version:
Siberian Mathematical Journal, 2008, 49:3, 549–561

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025