RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2008 Volume 49, Number 4, Pages 813–824 (Mi smj1879)

This article is cited in 8 papers

Hereditary normality of a space of the form $\mathscr F(X)$

A. V. Ivanov, E. V. Kashuba

Petrozavodsk State University, Faculty of Mathematics

Abstract: Assuming the continuum hypothesis we construct an example of a nonmetrizable compact set $X$ with the following properties
1) $X^n$ is hereditarily separable for all $n\in\mathbb N$,
2) $X^n\setminus\Delta_n$ is perfectly normal for every $n\in\mathbb N$, where $\Delta_n$ is the generalized diagonal of $X^n$, i.e., the set of points with at least two equal coordinates,
3) for every seminormal functor $\mathscr F$ that preserves weights and the points of bijectivity the space $\mathscr F_k(X)$ is hereditarily normal, where $k$ is the second smallest element of the power spectrum of the functor $\mathscr F$; in particular, $X^2$ and $\lambda_3X$ are hereditarily normal.
Our example of a space of this type strengthens the well-known example by Gruenhage of a nonmetrizable compact set whose square is hereditarily normal and hereditarily separable.

Keywords: seminormal functor, Katetov's problem, perfect normality, hereditary normality, hereditary separability.

UDC: 515.12

Received: 16.02.2007


 English version:
Siberian Mathematical Journal, 2008, 49:4, 650–659

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024