RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2009 Volume 50, Number 1, Pages 96–106 (Mi smj1940)

This article is cited in 6 papers

A characteristic property of the algebra $C(\Omega)_\beta$

M. I. Karahanyana, T. A. Khor'kovab

a Yerevan State University, Faculty of Mathematics and Mechanics
b Kazan State Power Engineering University

Abstract: We study some properties of the algebras of continuous functions on a locally compact space whose topology is defined by the family of all multiplication operators ($\beta$-uniform algebras). We introduce the notion of a $\beta$-amenable algebra and show that a $\beta$-uniform algebra is $\beta$-amenable if and only if it coincides with the algebra of bounded functions on a locally compact space (an analog of M. V. Sheinberg's theorem for uniform algebras).

Keywords: $\beta$-uniform algebra, cohomology, derivative, $\beta$-topology, amenability.

UDC: 513.83

Received: 12.07.2007
Revised: 06.06.2008


 English version:
Siberian Mathematical Journal, 2009, 50:1, 77–85

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024