RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2009 Volume 50, Number 1, Pages 123–131 (Mi smj1943)

This article is cited in 3 papers

Classification of finite groups satisfying a minimal condition

Sh. Lia, W. Mengb

a Department of Mathematics, Guangxi University
b College of preparatory education, Yunnan Nationalities University

Abstract: If $H$ is a subgroup of a finite group $G$ then we denote the normal closure of $H$ in $G$ by $H^G$. We call $G$$PE$-group if every minimal subgroup $X$ of $G$ satisfies $N_G(X)\cap X^G=X$. The authors classify the finite non-$PE$-groups whose maximal subgroups of even order are $PE$-groups.

Keywords: minimal subgroup, $NE$-subgroup, $PE$-group, soluble group.

UDC: 512.54

Received: 02.04.2007


 English version:
Siberian Mathematical Journal, 2009, 50:1, 100–106

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024