RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2009 Volume 50, Number 1, Pages 199–204 (Mi smj1949)

This article is cited in 6 papers

The Kreps–Yan theorem for Banach ideal spaces

D. B. Rokhlin

Southern Federal University, Faculty of Mathematics, Mechanics and Computer Sciences

Abstract: Consider a closed convex cone $C$ in a Banach ideal space $X$ on some measure space with $\sigma$-finite measure. We prove that the fulfilment of the conditions $C\cap X_+=\{0\}$ and $C\supset-X_+$ guarantees the existence of a strictly positive continuous functional on $X$ whose restriction to $C$ is nonpositive.

Keywords: Kreps–Yan theorem, Banach ideal space, $\sigma$-finite measure, cone, separation.

UDC: 517.982.22

Received: 11.10.2007


 English version:
Siberian Mathematical Journal, 2009, 50:1, 162–166

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024