RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2009 Volume 50, Number 3, Pages 503–514 (Mi smj1977)

This article is cited in 1 paper

On the subspace $L((x\land y)^m)$ of $S^m(\land^2\mathbb R^4)$

V. Yu. Gubarev

Novosibirsk State University, Mechanics and Mathematics Department, Novosibirsk

Abstract: We take the exterior power $\mathbb R^4\land\mathbb R^4$ of the space $\mathbb R^4$, its $m$th symmetric power $V=S^m(\land^2\mathbb R^4)=(\mathbb R^4\land\mathbb R^4)\vee(\mathbb R^4\land\mathbb R^4)\vee\cdots\vee(\mathbb R^4\land\mathbb R^4)$, and put $V_0=L((x\land y)\vee\cdots\vee(x\land y)\colon x,y\in\mathbb R^4)$. We find the dimension of $V_0$ and an algorithm for distinguishing a basis for $V_0$ efficiently. This problem arose in vector tomography for the purpose of reconstructing the solenoidal part of a symmetric tensor field.

Keywords: symmetric power of a space, exterior power of a space.

UDC: 512.64

Received: 03.04.2008


 English version:
Siberian Mathematical Journal, 2009, 50:3, 395–404

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024