RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2007 Volume 48, Number 1, Pages 236–237 (Mi smj20)

On two questions of the theory of retracts

P. V. Chernikov


Abstract: We establish that condition $(\Gamma)$ on brick decomposition is indecomposable. This answers K. Borsuk's question [1]. We prove that there exist metric spaces $X$ and $Y$ and a point $(a,b)\in X\times Y$ such that $(a,b)$ is an $r$-point of the product $X\times Y$; moreover, $a$ is not an $r$-point of $X$. This answers A. Kosinski's question [2].

Keywords: absolute retract, condition $(\Gamma)$, $Q$-manifold, $r$-point.

UDC: 513.83

Received: 09.12.2005
Revised: 01.09.2006


 English version:
Siberian Mathematical Journal, 2007, 48:1, 189–190

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024