RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2009 Volume 50, Number 4, Pages 780–799 (Mi smj2000)

This article is cited in 1 paper

Quasicrystallographic groups on Minkowski spaces

R. M. Garipova, V. A. Churkinb

a M. A. Lavrent'ev Institute of Hydrodynamics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: We generalize the quasicrystallographic groups in the sense of Novikov and Veselov from Euclidean spaces to pseudo-Euclidean and affine spaces. We prove that the quasicrystallographic groups on Minkowski spaces whose rotation groups satisfy an additional assumption are projections of crystallographic groups on pseudo-Euclidean spaces. An example shows that the assumption cannot be dropped. We prove that each quasicrystallographic group is a projection of a crystallographic group on an affine space.

Keywords: affine space, Minkowski space, quasicrystallographic group, projection, bilinear form, enveloping algebra, module.

UDC: 512

Received: 25.04.2008


 English version:
Siberian Mathematical Journal, 2009, 50:4, 616–631

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025