Abstract:
We generalize the quasicrystallographic groups in the sense of Novikov and Veselov from Euclidean spaces to pseudo-Euclidean and affine spaces. We prove that the quasicrystallographic groups on Minkowski spaces whose rotation groups satisfy an additional assumption are projections of crystallographic groups on pseudo-Euclidean spaces. An example shows that the assumption cannot be dropped. We prove that each quasicrystallographic group is a projection of a crystallographic group on an affine space.