RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2009 Volume 50, Number 4, Pages 841–849 (Mi smj2006)

This article is cited in 4 papers

Finite groups in which Sylow normalizers have nilpotent Hall supplements

B. Lia, W. Guob, J. Huangc

a Mathematics and information Science Department, Chengdu University of Information Technology, Chengdu, P. R. China
b Department of Mathematics, Xuzhou Normal University, Xuzhou, P. R. China
c Department of Mathematics, University of Science and Technology of China, Hefei, P. R. China

Abstract: The normalizer of each Sylow subgroup of a finite group $G$ has a nilpotent Hall supplement in $G$ if and only if $G$ is soluble and every tri-primary Hall subgroup $H$ (if exists) of $G$ satisfies either of the following two statements: (i) $H$ has a nilpotent bi-primary Hall subgroup; (ii) Let $\pi(H)=\{p,q,r\}$. Then there exist Sylow $p$-, $q$-, $r$-subgroups $H_p$, $H_q$ and $H_r$ of $H$ such that $H_q\subseteq N_H(H_p)$, $H_r\subseteq N_H(H_q)$ and $H_p\subseteq N_H(H_r)$.

Keywords: finite group, Sylow subgroup, normalizer, nilpotent Hall supplement, soluble group.

UDC: 512.54

Received: 26.06.2008


 English version:
Siberian Mathematical Journal, 2009, 50:4, 667–673

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024