RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2009 Volume 50, Number 4, Pages 933–941 (Mi smj2016)

This article is cited in 2 papers

$C$-spaces and simplicial complexes

V. V. Fedorchuk

Moscow State University, Faculty of Mechanics and Mathematics, Moscow

Abstract: Given a class $\mathscr G$ of simplicial complexes $G$, we introduce the notion of a $\mathscr G$-$C$-space. In the definition of a $C$-space, open disjoint families $v_i$ refine coverings $u_i$. The nerves of these families are zero-dimensional complexes. In our definition, the nerve of a family $v_i$ must embed in the complex $G_i$ of the class $\mathscr G$. We give a complete characterization of bicompact $\mathscr G$-$C$-spaces.

Keywords: $C$-space, simplicial complex, nerve, scattered space.

UDC: 515.12

Received: 24.04.2008


 English version:
Siberian Mathematical Journal, 2009, 50:4, 741–747

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025