Abstract:
Considering Bessel kernels on a Carnot group, we establish the main facts of nonlinear potential theory: a Wolff-type inequality, capacity estimates, and a strong capacity inequality. Deriving corollaries, we give an inequality of Sobolev–Adams type and relations between the capacity and Hausdorff measure, as well as lower bounds on the Teichmüller capacity. These yield the continuity of monotone functions of a Sobolev class and some estimates applicable to studying the fine properties of functions.
Keywords:nonlinear potential theory, Bessel kernel on a Carnot group, Sobolev space, embedding theorem, Teichmüller capacity.