RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2009 Volume 50, Number 5, Pages 1105–1122 (Mi smj2034)

This article is cited in 5 papers

Properties of $C^1$-smooth mappings with one-dimensional gradient range

M. V. Korobkov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: We find necessary and sufficient conditions for a curve in $\mathbb R^{m\times n}$ to be the gradient range of a $C^1$-smooth function $v\colon\Omega\subset\mathbb R^n\to\mathbb R^m$. We show that this curve has tangents in a weak sense; these tangents are rank 1 matrices and their directions constitute a function of bounded variation. We prove also that in this case $v$ satisfies an analog of Sard's theorem, while the level sets of the gradient mapping $\nabla v\colon\Omega\to\mathbb R^{m\times n}$ are hyperplanes.

Keywords: $C^1$-smooth function, gradient range, curve, one-dimensional set, Sard's theorem.

UDC: 517.95

Received: 18.03.2008


 English version:
Siberian Mathematical Journal, 2009, 50:5, 874–886

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024