Abstract:
Analogs of Robinson's theorem on joint consistency are found which are equivalent to the weak interpolation property (WIP) in extensions of Johansson's minimal logic J. Although all propositional superintuitionistic logics possess this property, there are J-logics without WIP. It is proved that the problem of the validity of WIP in J-logics can be reduced to the same problem over the logic Gl obtained from J by adding the tertium non datur. Some algebraic criteria for validity of WIP over J and Gl are found.