RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2010 Volume 51, Number 4, Pages 778–784 (Mi smj2124)

This article is cited in 3 papers

The Katětov property for finite degree seminormal functors

A. V. Ivanov

Petrozavodsk State University, Petrozavodsk, Russia

Abstract: A seminormal functor $\mathscr F$ enjoys the Katětov property ($K$-property) if for every compact set $X$ the hereditary normality of $\mathscr F(X)$ implies the metrizability of $X$. We prove that every seminormal functor of finite degree $n>3$ enjoys the $K$-property. On assuming the continuum hypothesis ($CH$) we characterize the weight preserving seminormal functors with the $K$-property. We also prove that the nonmetrizable compact set constructed in [1] on assuming $CH$ is a universal counterexample for the $K$-property in the class of weight preserving seminormal functors.

Keywords: seminormal functor, hereditary normality, Katětov cube theorem, Katětov property.

UDC: 515.12

Received: 12.02.2008


 English version:
Siberian Mathematical Journal, 2010, 51:4, 616–620

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025