RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2010 Volume 51, Number 6, Pages 1237–1250 (Mi smj2158)

This article is cited in 28 papers

Gröbner–Shirshov bases for Rota–Baxter algebras

L. A. Bokutab, Yu. Chenb, X. Dengb

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b South China Normal University, Guangzhou, Republic of China

Abstract: We establish the composition-diamond lemma for associative nonunitary Rota–Baxter algebras of weight $\lambda$. To give an application, we construct a linear basis for a free commutative and nonunitary Rota–Baxter algebra, show that every countably generated Rota–Baxter algebra of weight 0 can be embedded into a two-generated Rota–Baxter algebra, and prove the 1-PBW theorems for dendriform dialgebras and trialgebras.

Keywords: Rota–Baxter algebra, Gröbner–Shirshov basis.

UDC: 510.53+512.552.4+512.579+519.117

Received: 15.09.2009


 English version:
Siberian Mathematical Journal, 2010, 51:6, 978–988

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025