Abstract:
We propose a method for determining the partial indices of matrix functions with some symmetries. It rests on the canonical factorization criteria of the author's previous articles. We show that the method is efficient for the symmetric classes of matrix functions: unitary, hermitian, orthogonal, circular, symmetric, and others. We apply one of our results on the partial indices of Hermitian matrix functions and find effective well-posedness conditions for a generalized scalar Riemann problem (the Markushevich problem).