Abstract:
We study the differentiability of mappings in the geometry of Carnot–Carathéodory spaces under the condition of minimal smoothness of vector fields. We introduce a new concept of $hc$-differentiability and prove the $hc$-differentiability of Lipschitz mappings of Carnot–Carathéodory spaces (a generalization of Rademacher's theorem) and a generalization of Stepanov's theorem. As a consequence, we obtain the $hc$-differentiability almost everywhere of the quasiconformal mappings of Carnot–Carathéodory spaces. We establish the $hc$-differentiability of rectifiable curves by way of proof. Moreover, the paper contains a new proof of the functorial property of the correspondence "a local basis $\mapsto$ the nilpotent tangent cone."
Keywords:Carnot–Carathéodory space, subriemannian geometry, nilpotent tangent cone, differentiability of curves and Lipschitz mappings.