RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2011 Volume 52, Number 2, Pages 326–339 (Mi smj2200)

This article is cited in 12 papers

Minimal dimension families of complex lines sufficient for holomorphic extension of functions

A. M. Kytmanov, S. G. Myslivets, V. I. Kuzovatov

Institute of Mathematics, Siberian Federal University, Krasnoyarsk, Russia

Abstract: We consider continuous functions given on the boundary of a bounded domain $D$ in $\mathbb C^n$, $n>1$, with the one-dimensional holomorphic extension property along families of complex lines. We study the existence of holomorphic extensions of these functions to $D$ depending on the dimension and location of the families of complex lines.

Keywords: holomorphic extension, Bochner–Martinelli integral, harmonic function.

UDC: 517.55

Received: 03.06.2010


 English version:
Siberian Mathematical Journal, 2011, 52:2, 256–266

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025