RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2011 Volume 52, Number 3, Pages 542–554 (Mi smj2218)

This article is cited in 4 papers

Cyclic branched coverings of lens spaces

A. Yu. Vesninab, T. A. Kozlovskayab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novocibirsk
b Novosibirsk State University, Novosibirsk

Abstract: Some infinite family is constructed of orientable three-dimensional closed manifolds $M_n(p,q)$, where $n\ge2$, $p\ge3$, $0<q<p$, and $(p,q)=1$, such that $M_n(p,q)$ is an $n$-fold cyclic covering of the lens space $L(p,q)$ branched over a two-component link.

Keywords: three-dimensional manifold, branched covering, Heegaard diagram.

UDC: 515.162

Received: 17.03.2011


 English version:
Siberian Mathematical Journal, 2011, 52:3, 426–435

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024