RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2011 Volume 52, Number 4, Pages 745–753 (Mi smj2235)

On almost good triples of vertices in edge regular graphs

V. I. Belousova, A. A. Makhnev

Institute of Mathematics and Mechanics, Ekaterinburg, Russia

Abstract: Consider a connected edge regular graph $\Gamma$ with parameters $(v,k,\lambda)$ and put $b_1=k-\lambda-1$. A triple $(u,w,z)$ of vertices is called (almost) good whenever $d(u,w)=d(u,z)=2$ and $\mu(u,w)+\mu(u,z)\le2k-4b_1+3$ (and $\mu(u,w)+\mu(u,z)=2k-4b_1+4$). If $k=3b_1+\gamma$ with $\gamma\ge-2$, a triple $(u,w,z)$ is almost good, and $\Delta=[u]\cap[w]\cap[z]$then: either $|\Delta|\le2$; or $\Delta$ is a 3-clique and $\Gamma$ is a Clebsch graph; or $\Delta$ is a 3-clique, $k=16$, $b_1=6$ and $v=31$; or $\Delta$ is a 4-clique and $\Gamma$ is a Schläfli graph.

Keywords: edge regular graph, Clebsch graph, Schläfli graph, almost good triple of vertices.

UDC: 519.17

Received: 01.12.2008


 English version:
Siberian Mathematical Journal, 2011, 52:4, 585–592

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025