RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2011 Volume 52, Number 4, Pages 809–822 (Mi smj2240)

This article is cited in 15 papers

Asymptotic variance of the self-intersections of stable random walks using Darboux–Wiener theory

G. Deligiannidisa, S. A. Utevb

a University of Leicester, Leicester, UK
b University of Nottingham, Nottingham, UK

Abstract: We present a Darboux–Wiener type lemma as a powerful alternative to the classical Tauberian theorem when monotonicity is not known a priori. We apply it to obtain the exact asymptotics of the variance of the self-intersections of a one-dimensional stable random walk. Finally we prove a functional central limit theorem for stable random walk in random scenery conjectured in [1].

Keywords: random walk, self-intersection, Darboux–Wiener theory.

UDC: 519.214

Received: 04.12.2010


 English version:
Siberian Mathematical Journal, 2011, 52:4, 639–650

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025