RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2011 Volume 52, Number 5, Pages 1074–1086 (Mi smj2259)

This article is cited in 5 papers

An effective minimal encoding of uncountable sets

V. G. Kanovei, V. A. Lyubetsky

Kharkevich Institute for Information Transmission Problems, Moscow, Russia

Abstract: We propose a method for encoding sets of the countable ordinals by generic reals which preserves cardinality and enjoys the property of minimality over the encoded set.
For $W\subseteq\omega_1$ there is a cardinal-preserving generic extension $L[W][x]$ of the class $L[W]$ by a generic real $x$ such that $W$ belongs to the class $L[x]$, i.e., $W$ is Gödel constructible with respect to $x$, while $x$ itself is minimal over $L[W]$.

Keywords: forcing, minimal encoding, relatively constructible set.

UDC: 510.223

Received: 14.08.2009


 English version:
Siberian Mathematical Journal, 2011, 52:5, 854–863

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024