RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2012 Volume 53, Number 1, Pages 59–67 (Mi smj2289)

This article is cited in 37 papers

On the products of $\mathbb P$-subnormal subgroups of finite groups

A. F. Vasil'eva, T. I. Vasil'evab, V. N. Tyutyanova

a Francisk Skaryna Gomel State University, Faculty of Mathematics, Gomel, Belarus
b Belarusian State University of Transport, Gomel, Belarus

Abstract: A subgroup $H$ of a finite group $G$ is called $\mathbb P$-subnormal in $G$ whenever $H$ either coincides with $G$ or is connected to $G$ by a chain of subgroups of prime indices. If every Sylow subgroup of $G$ is $\mathbb P$-subnormal in $G$ then $G$ is called a w-supersoluble group. We obtain some properties of $\mathbb P$-subnormal subgroups and the groups that are products of two $\mathbb P$-subnormal subgroups, in particular, of $\mathbb P$-subnormal w-supersoluble subgroups.

Keywords: finite group, $\mathbb P$-subnormal subgroup, w-supersoluble group, product of subgroups.

UDC: 512.542

Received: 04.02.2011


 English version:
Siberian Mathematical Journal, 2012, 53:1, 47–54

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025