RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2012 Volume 53, Number 6, Pages 1209–1230 (Mi smj2377)

This article is cited in 6 papers

Tail asymptotics for dependent subexponential differences

H. Albrecherab, S. Asmussenc, D. Kortschakad

a Department of Actuarial Science, Faculty of Business and Economics, University of Lausanne, Lausanne, Switzerland
b Swiss Finance Institute, Switzerland
c Department of Mathematical Sciences, Aarhus University, Aarhus, Denmark
d Université de Lyon, Université Claude Bernard Lyon 1, Institut de Science Financière et d'Assurances, Lyon, France

Abstract: We study the asymptotic behavior of $\mathbb P(X-Y>u)$ as $u\to\infty$, where $X$ is subexponential, $Y$ is positive, and the random variables $X$ and $Y$ may be dependent. We give criteria under which the subtraction of $Y$ does not change the tail behavior of $X$. It is also studied under which conditions the comonotonic copula represents the worst-case scenario for the asymptotic behavior in the sense of minimizing the tail of $X-Y$. Some explicit construction of the worst-case copula is provided in other cases.

Keywords: subexponential random variables, differences, dependence, copulas, mean excess function.

UDC: 519.2

Received: 29.09.2011


 English version:
Siberian Mathematical Journal, 2012, 53:6, 965–983

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024