RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2013 Volume 54, Number 1, Pages 77–85 (Mi smj2402)

This article is cited in 4 papers

Finite factorizable groups with solvable $\mathbb P^2$-subnormal subgroups

V. N. Kniahinaa, V. S. Monakhovb

a Gomel Engineering Institute, Gomel, Belarus
b Francisk Skorina Gomel State University, Gomel, Belarus

Abstract: A subgroup $H$ of a finite group $G$ is called $\mathbb P^2$-subnormal whenever there exists a subgroup chain $H=H_0\le H_1\le\dots\le H_n=G$ such that $|H_{i+1}:H_i|$ divides prime squares for all $i$. We study a finite group $G=AB$ on assuming that $A$ and $B$ are solvable subgroups and the indices of subgroups in the chains joining $A$ and $B$ with the group divide prime squares. In particular, we prove that a group of this type is solvable without using the classification of finite simple groups.

Keywords: finite group, solvable group, product of subgroups, index of a subgroup.

UDC: 512.542

Received: 31.10.2012


 English version:
Siberian Mathematical Journal, 2013, 54:1, 56–63

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024