RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2013 Volume 54, Number 1, Pages 127–130 (Mi smj2406)

This article is cited in 1 paper

On groups with given properties of the finite subgroups generated by couples of $2$-elements

D. V. Lytkinaabc, V. D. Mazurovabc

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
c Siberian State University of Telecommunications and Information Sciences, Novosibirsk, Russia

Abstract: Suppose that every finite subgroup, generated by a couple of $2$-elements of a periodic group, is either nilpotent of class 2 or of exponent 4. We prove that the group possesses the normal Sylow $2$-subgroup that is either nilpotent of class 2 or of exponent 4.

Keywords: locally finite group, $2$-Engel group, involution.

UDC: 512.542

Received: 26.06.2012


 English version:
Siberian Mathematical Journal, 2013, 54:1, 96–98

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025