RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2013 Volume 54, Number 3, Pages 637–654 (Mi smj2448)

This article is cited in 19 papers

Solvability of cubic equations in $p$-adic integers ($p>3$)

F. M. Mukhamedova, B. A. Omirovb, M. Kh. Saburova, K. K. Masutovab

a Faculty of Science, International Islamic University Malaysia P.O. Box, 141, Kuantan, Pahang, 25710, Malaysia
b Institute of Mathematics at the National University of Uzbekistan, Tashkent, Uzbekistan

Abstract: We give a criterion for the existence of solutions to an equation of the form $^3+ax=b$, where $a,b\in\mathbb Q_p$, in $p$-adic integers for $p>3$. Moreover, in the case when the equation $x^3+ax=b$ is solvable, we give necessary and sufficient recurrent conditions on a $p$-adic number $x\in\mathbb Z^*_p$ under which $x$ is a solution to the equation.

Keywords: cubic equation, $p$-adic number, solution, algorithm.

UDC: 511.53

Received: 23.04.2012


 English version:
Siberian Mathematical Journal, 2013, 54:3, 501–516

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024