RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2013 Volume 54, Number 3, Pages 689–699 (Mi smj2451)

Determining the image of some singular function

S. Ponomareva, A. Gospodarczykb

a Institute of Mathematics, Pomeranian Academy in Słupsk, Arciszewskiego 22b, 76-200 Słupsk, Poland
b University of Gdaësk, Institute of Mathematics, Gdaësk, Poland

Abstract: The problem is as follows: How to describe graphically the set $T(1)(\Gamma)$ where $T(1)(z)=\int_\Gamma\frac{d\mu(\zeta)}{\zeta-z}$ and $\Gamma=\Gamma_\theta$ is the Von Koch curve, $\theta\in(0,\pi/4)$. In this paper we give some expression permitting us to compute $T-\theta(1)(z)$ for each $z\in\Gamma$ to within an arbitrary $\epsilon>0$. Also we provide an estimate for the error.

Keywords: Von Koch curve, natural parametrization, quasiconformal mapping, pseudo-analytic mapping, Cauchy-type integral.

UDC: 517.518.1+517.518.17

Received: 25.03.2012


 English version:
Siberian Mathematical Journal, 2013, 54:3, 545–554

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024