RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2013 Volume 54, Number 5, Pages 1051–1068 (Mi smj2477)

This article is cited in 1 paper

On a boundary analog of the Forelli theorem

V. I. Kuzovatov, A. M. Kytmanov

Institute of Mathematics and Computer Science, Siberian Federal University, Krasnoyarsk, Russia

Abstract: A boundary analog of the Forelli theorem for real-analytic functions is established, i.e., it is demonstrated that each real-analytic function $f$ defined on the boundary of a bounded strictly convex domain $D$ in the multidimensional complex space with the one-dimensional holomorphic extension property along families of complex lines passing through a boundary point and intersecting $D$ admits a holomorphic extension to $D$ as a function of many complex variables.

Keywords: holomorphic extension, complex lines, real-analytic function.

UDC: 517.55

Received: 19.11.2012


 English version:
Siberian Mathematical Journal, 2013, 54:5, 841–856

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025