RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2013 Volume 54, Number 6, Pages 1287–1293 (Mi smj2495)

This article is cited in 44 papers

On a nonlocal boundary value problem for the multidimensional heat equation in a noncylindrical domain

T. Sh. Kal'menov, N. E. Tokmagambetov

Institute of Mathematics and Mathematical Modelling, Ministry of Education and Science of the Republic of Kazakhstan, Almaty, Kazakhstan

Abstract: We study a nonlocal initial-boundary value problem for the space-multidimensional heat equation in a noncylindrical domain. It is proven that the heat potential is a unique classical solution to this problem.

Keywords: multidimensional heat equation, nonlocal boundary value problem, heat potential, noncylindrical domain.

UDC: 517.95

Received: 05.12.2012
Revised: 09.04.2013


 English version:
Siberian Mathematical Journal, 2013, 54:6, 1023–1028

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024