RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2013 Volume 54, Number 6, Pages 1353–1367 (Mi smj2501)

This article is cited in 9 papers

Edge-symmetric distance-regular coverings of cliques: The affine case

A. A. Makhnev, D. V. Paduchikh, L. Yu. Tsiovkina

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia

Abstract: Let $\Gamma$ be an edge-symmetric distance-regular covering of a clique. Then the group $G=\mathrm{Aut}(\Gamma)$ acts twice transitively on the set $\Sigma$ of antipodal classes. We propose a classification for the graphs based on the description of twice transitive permutation groups. This program is realized for $a_1=c_2$. In this article we classify graphs in the case when the action of $G$ on $\Sigma$ is affine.

Keywords: distance-regular graph, edge-symmetric graph, automorphism group.

UDC: 519.17+512.54

Received: 29.10.2012
Revised: 20.02.2013


 English version:
Siberian Mathematical Journal, 2013, 54:6, 1076–1087

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025