RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2014 Volume 55, Number 1, Pages 11–16 (Mi smj2508)

This article is cited in 1 paper

On additivity of mappings on measurable functions

A. M. Bikchentaev

Kazan Federal University, Kazan, Russia

Abstract: We prove the additivity of regular $l$-additive mappings $T\colon\mathscr K\to[0,+\infty]$ of a hereditary cone $\mathscr K$ in the space of measurable functions on a measure space. Some examples are constructed of non-$d$-additive $l$-additive mappings $T$. The monotonicity of $l$-additive mappings $T\colon\mathscr K\to[0,+\infty]$ is established. The examples are constructed of nonmonotone $d$-additive mappings $T$.
Let $(S,+)$ be a commutative cancellation semigroup. Given a mapping $T\colon\mathscr K\to S$, we prove the equivalence of additivity and $l$-additivity. It is shown that a strongly regular $2$-homogeneous $l$-subadditive mapping $T$ is subadditive. All results are new even in case $\mathscr K=L^+_\infty$.

Keywords: measure space, measurable function, additive mapping, cone, weight, monotone mapping, cancellation semigroup, vector lattice.

UDC: 517.98

Received: 30.01.2013
Revised: 18.10.2013


 English version:
Siberian Mathematical Journal, 2014, 55:1, 7–11

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024