RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2014 Volume 55, Number 3, Pages 562–572 (Mi smj2553)

This article is cited in 4 papers

On $\Sigma$-rigid presentations of the real order

A. S. Morozovab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Abstract: For arbitrary tuples of real parameters $\bar p$, we prove the existence and effective infiniteness of the class of the linear orders on $\mathbb R$ of type $\langle\mathbb R,<\rangle$ which are $\Sigma$-definable over $\mathbb{HF(R)}$ with parameters $\bar p$ and have no nontrivial $\Sigma$-definable self-embeddings with parameters $\bar p$.

Keywords: $\Sigma$-definable model, computable model, computability, $\Sigma$-definability, admissible set, linear order.

UDC: 510.5

Received: 26.12.2012


 English version:
Siberian Mathematical Journal, 2014, 55:3, 457–464

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025