RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2014 Volume 55, Number 4, Pages 818–839 (Mi smj2574)

The variational stability of an optimal control problem for Volterra-type equations

N. I. Pogodaev, A. A. Tolstonogov

Institute for System Dynamics and Control Theory, Irkutsk, Russia

Abstract: We study the variational stability of an optimal control problem for a Volterra-type nonlinear functional-operator equation. This means that for this optimal control problem ($P_\varepsilon$) with a parameter $\varepsilon$ we study how its minimum value $\min(P_\varepsilon)$ and its set of minimizers $\operatorname{argmin}(P_\varepsilon)$ depend on $\varepsilon$. We illustrate the use of the variational stability theorem with a series of particular problems.

Keywords: $\Gamma$-convergence, variational stability, optimal control, partial differential equations.

UDC: 517.977

Received: 23.08.2013


 English version:
Siberian Mathematical Journal, 2014, 55:4, 667–686

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025