RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2015 Volume 56, Number 3, Pages 498–512 (Mi smj2655)

This article is cited in 18 papers

The index set of Boolean algebras autostable relative to strong constructivizations

S. S. Goncharovab, N. A. Bazhenovba, M. I. Marchuka

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Abstract: We obtain exact estimates for the algorithmic complexity for the classes of strongly constructivizable computable models autostable relative to strong constructivizations and belonging to the following natural classes: Boolean algebras, distributive lattices, rings, commutative semigroups, and partial orders.

Keywords: computable model, strongly constructivizable model, autostability, autostability relative to strong constructivizations, Boolean algebra, distributive lattice, ring, commutative semigroup, partial order, hyperarithmetic hierarchy, index set.

UDC: 510.5+512.563

Received: 18.03.2015

DOI: 10.17377/smzh.2015.56.303


 English version:
Siberian Mathematical Journal, 2015, 56:3, 393–404

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024