RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2015 Volume 56, Number 4, Pages 752–761 (Mi smj2675)

On compactness of maximal operators

E. I. Berezhnoĭ

Demidov Yaroslavl State University, Yaroslavl, Russia

Abstract: Using a new approach, we show that, for any ideal space $X$ with nonempty regular part, the maximal function operator $M_\mathbf B$ constructed from an arbitrary quasidensity differential basis $\mathbf B$ is not compact if considered in a pair of weighted spaces $(X_w,X_v)$ generated by $X$. For special differential bases that includ $(X_w,X_v)$ generated by an arbitrary ideal space $X$. An example is given of a quasidensity differential basis such that the maximal function operator constructed from this basis is compact in $(L^\infty,L^\infty)$.

Keywords: maximal operator, ideal Banach space, rearrangement invariant space, compactness of an operator, differential basis.

UDC: 513.88+517.5

Received: 08.09.2014

DOI: 17377/smzh.2015.56.403


 English version:
Siberian Mathematical Journal, 2015, 56:4, 593–600

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025