RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2015 Volume 56, Number 4, Pages 853–877 (Mi smj2683)

This article is cited in 5 papers

Zeta-invariants of the Steklov spectrum of a planar domain

E. G. Mal'kovichab, V. A. Sharafutdinovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Abstract: The classical inverse problem of the determination of a smooth simply-connected planar domain by its Steklov spectrum [1] is equivalent to the problem of the reconstruction, up to conformal equivalence, a positive function $a\in C^\infty(\mathbb S)$ on the unit circle $\mathbb S=\{e^{i\theta}\}$ from the spectrum of the operator $a\Lambda_e$, where $\Lambda_e=(-d^2/d\theta^2)^{1/2}$. We introduce $2k$-forms $Z_k(a)$ ($k=1,2,\dots$) of the Fourier coefficients of $a$, called the zeta-invariants. These invariants are determined by the eigenvalues of $a\Lambda_e$. We study some properties of the forms $Z_k(a)$; in particular, their invariance under the conformal group. A few open questions about zeta-invariants is posed at the end of the article.

Keywords: Steklov spectrum, Dirichlet-to-Neumann operator, zeta-function, inverse spectral problem.

UDC: 517.984

Received: 25.03.2014

DOI: 10.17377/smzh.2015.56.411


 English version:
Siberian Mathematical Journal, 2015, 56:4, 678–698

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024