RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2015 Volume 56, Number 4, Pages 878–895 (Mi smj2684)

This article is cited in 1 paper

An eigenvalue multiplicity formula for the Schur complement of a $3\times3$ block operator matrix

M. É. Muminova, T. Kh. Rasulovb

a University of Technology, Skudai, Malaysia
b Bukhara State University, Bukhara, Uzbekistan

Abstract: We consider the Schur complement $S(\lambda)$ with real spectral parameter $\lambda$ corresponding to a certain $3\times3$ block operator matrix. In our case the essential spectrum of $S(\lambda)$ can have gaps. We obtain formulas for the number and multiplicities of eigenvalues belonging to an arbitrary interval outside the essential spectrum of $S(\lambda)$.

Keywords: Schur complement, bosonic Fock space, block operator matrix, creation and annihilation operators, trace class operator, essential and discrete spectra, Weyl's inequality.

UDC: 517.984

Received: 28.10.2014

DOI: 10.17377/smzh.2015.56.412


 English version:
Siberian Mathematical Journal, 2015, 56:4, 699–713

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024