RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2015 Volume 56, Number 5, Pages 989–1029 (Mi smj2693)

This article is cited in 7 papers

Isomorphisms of Sobolev spaces on Carnot groups and quasiconformal mappings

S. K. Vodop'yanovab, N. A. Evseevba

a Novosibirsk State University, Novosibirsk, Russia
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia

Abstract: We prove that a measurable mapping of domains on a Carnot group induces by the corresponding change of variables an isomorphism of the Sobolev spaces whose integrability exponent is equal to the Hausdorff dimension of the group if and only if the mapping coincides with a quasiconformal mapping almost everywhere.

Keywords: composition operator, Sobolev space, quasiconformal mapping, Carnot group.

UDC: 517.518+517.54

Received: 16.02.2015

DOI: 10.17377/smzh.2015.56.503


 English version:
Siberian Mathematical Journal, 2015, 56:5, 789–821

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024