RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2015 Volume 56, Number 6, Pages 1215–1233 (Mi smj2708)

This article is cited in 8 papers

Analysis of stability and stabilization of nonlinear systems via decomposition

A. Yu. Aleksandrova, A. P. Zhabkoa, A. A. Kosovb

a St. Petersburg State University, St. Petersburg, Russia
b Institute for System Dynamics and Control Theory, Irkutsk, Russia

Abstract: We establish necessary and sufficient conditions for the solvability of a Lyapunov-type system of PDEs in the class of homogeneous functions. Using these, we propose an approach to studying the stability of an equilibrium of an essentially nonlinear system of ODEs in the critical case of $n$ zero roots and $n$ pure imaginary roots. The approach bases on decomposition of the system in question into two separate subsystems of half dimension.

Keywords: Lyapunov system, homogeneous solution, nonlinear system, decomposition, asymptotic stability, stabilization.

UDC: 517.925.51

Received: 01.03.2015

DOI: 10.17377/smzh.2015.56.602


 English version:
Siberian Mathematical Journal, 2015, 56:6, 968–981

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024