RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2015 Volume 56, Number 6, Pages 1264–1276 (Mi smj2711)

This article is cited in 12 papers

Recognition by spectrum for simple classical groups in characteristic $2$

A. V. Vasil'evab, M. A. Grechkoseevaba

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Abstract: A finite group $G$ is said to be recognizable by spectrum if every finite group with the same set of element orders as $G$ is isomorphic to $G$. We prove that all finite simple symplectic and orthogonal groups over fields of characteristic $2$, except $S_4(q)$, $S_6(2)$, $O^+_8(2)$ and $S_8(q)$, are recognizable by spectrum. This result completes the study of the recognition-by-spectrum problem for finite simple classical groups in characteristic $2$.

Keywords: simple classical group, element orders, recognition by spectrum.

UDC: 512.542

Received: 18.06.2015

DOI: 10.17377/smzh.2015.56.605


 English version:
Siberian Mathematical Journal, 2015, 56:6, 1009–1018

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025