RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2015 Volume 56, Number 6, Pages 1366–1374 (Mi smj2719)

A geometric flow in the space of $G_2$-structures on the cone over $S^3\times S^3$

Kh. Zh. Kozhasovab

a Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
b Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract: We consider a flow of $G_2$-structures on a $7$-dimensional manifold admitting a $G_2$-structure. The general solution to this flow is found in the case when the manifold is the cone over $S^3\times S^3$. We prove the convergence of the metric associated with the solution to the conical metric modulo homotheties.

Keywords: $G_2$-structure, $G_2$-manifold flow of $G_2$-structures, cone over $S^3\times S^3$.

UDC: 514.7

Received: 03.07.2014
Revised: 17.08.2015

DOI: 10.17377/smzh.2015.56.613


 English version:
Siberian Mathematical Journal, 2015, 56:6, 1093–1100

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025