RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2016 Volume 57, Number 2, Pages 259–275 (Mi smj2742)

This article is cited in 17 papers

Finite groups with generalized subnormal embedding of Sylow subgroups

A. F. Vasil'eva, T. I. Vasil'evab, A. S. Vegeraa

a Francisk Skaryna Gomel State University, Gomel, Belarus
b Belarusian State University of Transport, Gomel, Belarus

Abstract: Given a set $\pi$ of primes and a hereditary saturated formation $\mathfrak F$, we study the properties of the class of groups $G$ for which the identity subgroup and all Sylow $p$-subgroups are $\mathfrak F$-subnormal ($\mathrm K$-$\mathfrak F$-subnormal) in $G$ for each $p$ in $\pi$. We show that such a class is a hereditary saturated formation and find its maximal inner local screen. Some criteria are obtained for the membership of a group in a hereditary saturated formation in terms of its formation subnormal Sylow subgroups.

Keywords: finite group, Sylow subgroup, formation, hereditary saturated formation, $\mathfrak F$-subnormal subgroup, $\mathrm K$-$\mathfrak F$-subnormal subgroup, local screen.

UDC: 512.542

Received: 24.04.2015

DOI: 10.17377/smzh.2016.57.203


 English version:
Siberian Mathematical Journal, 2016, 57:2, 200–212

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025