RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2016 Volume 57, Number 2, Pages 332–338 (Mi smj2747)

This article is cited in 1 paper

On hereditary superradical formations

X. Yia, S. F. Kamornikovb

a Departament of Mathematics, Zhejiang Sci-Tech University, Hangzhou, P. R. China
b International University "MITSO", Gomel, Belarus

Abstract: A formation $\mathfrak F$ is superradical provided that: (1) $\mathfrak F$ is a normally hereditary formation; (2) each group $G=AB$, where $A$ and $B$ are $\mathfrak F$-subnormal $\mathfrak F$-subgroups in $G$, belongs to $\mathfrak F$. We give an example of a hereditary superradical formation that is not soluble saturated. This gives a negative answer to Problem 14.99(b) in The Kourovka Notebook.

Keywords: finite group, formation, superradical formation, soluble saturation.

UDC: 512.542

Received: 31.12.2014

DOI: 10.17377/smzh.2016.57.208


 English version:
Siberian Mathematical Journal, 2016, 57:2, 260–264

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025