RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2016 Volume 57, Number 3, Pages 543–561 (Mi smj2763)

This article is cited in 1 paper

Optimal cubature formulas for calculation of multidimensional integrals in weighted Sobolev spaces

I. V. Boykov

Penza State University, Penza, Russia

Abstract: Optimal cubature formulas are constructed for calculations of multidimensional integrals in weighted Sobolev spaces. We consider some classes of functions defined in the cube $\Omega=[-1,1]^l$, $l=1,2,\dots$, and having bounded partial derivatives up to the order $r$ in $\Omega$ and the derivatives of $j$th order ($r<j\le s$) whose modulus tends to infinity as power functions of the form $(d(x,\Gamma))^{-(j-r)}$, where $x\in\Omega\setminus\Gamma$, $x=(x_1,\dots,x_l)$, $\Gamma=\partial\Omega$, and $d(x,\Gamma)$ is the distance from $x$ to $\Gamma$.

Keywords: weighted Sobolev space, cubature formula, optimal algorithm.

UDC: 517.54

Received: 27.10.2014
Revised: 05.10.2015

DOI: 10.17377/smzh.2016.57.305


 English version:
Siberian Mathematical Journal, 2016, 57:3, 425–441

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024