RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2016 Volume 57, Number 4, Pages 746–754 (Mi smj2781)

This article is cited in 11 papers

On spectra of almost simple groups with symplectic or orthogonal socle

M. A. Grechkoseevaab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Abstract: Finite groups are said to be isospectral if they have the same sets of the orders of elements. We investigate almost simple groups $H$ with socle $S$, where $S$ is a finite simple symplectic or orthogonal group over a field of odd characteristic. We prove that if $H$ is isospectral to $S$, then $H/S$ presents a $2$-group. Also we give a criterion for isospectrality of $H$ and $S$ in the case when $S$ is either symplectic or orthogonal of odd dimension.

Keywords: almost simple groups, orders of elements, recognition by spectrum.

UDC: 512.542

Received: 03.11.2015

DOI: 10.17377/smzh.2016.57.402


 English version:
Siberian Mathematical Journal, 2016, 57:4, 582–588

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025